
Global Cloud Resolving Model
(GCRM) Grid

Karen Schuchardt
GO-ESSP, Oct 2009

The Global Cloud Resolving Model

Dave Randall @ Colorado State University
Similar in scale (and grid) to Earth Simulator

Two Models: Red Team/Blue Team
Data Products:

Near term, week long simulations to evaluate model
One 1 year run by 2011
Within 10 years, used in weather forecasting
10+ years, “time-slice” execution to improve parameterization of
coarse grained models.

http://kiwi.atmos.colostate.edu/gcrm/

The Geodesic Grid

3

a) Start with a regular dodecahedron, which is a platonic solid with 20 equilateral triangles as faces.
b) Decompose each triangular face into four new triangles.
c) Repeat...
d) Grid points form a logically rectangular block.

http://kiwi.atmos.colostate.edu/BUGS/geodesic/

N S 0 1 2 3 4 5 6 7 8 9

Poles Panels Morton Ordering
Blocks within panels can be written as
contiguous blocks
Order not dependent on number of
processors
Good data locality for parallel analysis

The Data Challenge

Assuming
• 4km
• 100 vertical levels
• 11 cell (16.8GB each)
• 4 corner (33.6 GB each)
• 5 edge (50.3 GB each)

#cells #corners #edges

~7 km 10M 20M 30M

~4 km 40M 80M 120M

~2 km 160M 320M 480M

GCRM Horizontal Grid

We need parallel tools!

Data Model

Vertical layers and interfaces
Horizontal data at cells, corners, edges
External Grid files
Currently drawing from:

CF
UGRID
Gridspec (but not tiles)

Our Extensions = Neighbors+

Data Model – Enhanced

float interfaces(interfaces)

interfaces:positive = “down”;

interfaces::axis = “Z”;

float layers(layers)

layers:positive = “down”;

layers::axis = “Z”;

time = UNLIMITED ;

cells = 41943042 ;

corners = 83886080 ;

edges = 125829120 ;

layers = 25 ;

interfaces = 26 ;

cellcorners = 6 ;

celledges = 6 ;

cellneighbors = 6 ;

float corner_cell_map_lon(cells,cellcorners);

float corner_cell_map_lat(cells,cellcorners);

float edge_cell_map_lon(cells, celledges) ;

float edge_cell_map_lat(cells, celledges);

float wind(time, edges, layers) ;

wind:grid = “grid”;

wind:coordinates = “grid_edge_lat grid_edge_lon”;

float pressure(time, cells, interfaces) ;

wind:grid = “grid”;

pressure:coordinates = "grid_center_lat grid_center_lon" ;

float wind_ew(time,corners, interfaces) ;

wind:grid = “grid”;

pressure:coordinates = "grid_corner_lat grid_corner_lon" ;

Dimensions

Vertical

float grid_center_lat(cells) ;

grid_center_lat:bounds = "corner_cell_map_lat" ;

float grid_center_lon(cells) ;

float grid_corner_lat(corners) ;

float grid_corner_lon(corners) ;

float grid_edge_lat(edges) ;

float grid_edge_lon(edges);

int grid(cells, cellcorners) ;

grid:cell_type = “hex”;

grid:index_start = 0s;

grid:standard_name = “connectivity_array”;

grid:edgelist = “cell_edges”;

grid:coordinates_cells = “grid_center_lon grid_center_lat”;

grid:coordinates_nodes = “grid_corner_lon grid_corner_lat”;

grid:coordinates_edges = “grid_edge_lon grid_edge_lat”;

grid:traverse = “counter-clockwise”;

int cell_edges(cells, celledges) ;

cell_edges:traverse = “counter-clockwise”;

cell_edges:standard_name = “edge_array”;

int edge_corners(edges, 2);

edge_corners:standard_name = “TBD”;

int cell_neighbors(cells, cellneighbors) ;

cell_neighbors:traverse = “counter-clockwise”;

cell_neighbors:standard_name = “connectivity”;

Geometry

Topology

Convenience

Variables

Parallel Subsetter

Based on Global Arrays toolkit to simplify communications
Currently binding to PNetCDF but pluggable to NetCDF4
Investigating ways to improve IO performance

MJO region; collective buffering

N. Hemisphere region; collective buffering

N. Hemisphere

Parallel Data Analysis

VisIt

Already strong in parallel analysis
Relies heavily on “convenience” grid variables
Currently “hardwired” to certain variables –
would like to be able to make this into a more
general capability

