
Using OpenID/OAuth to access
Federated Data Services

M. Benno Blumenthal
IRI of Columbia University

GO-ESSP 2011

10 May 2011

CMIP3

Pydap server: http://esgcet.llnl.gov/dap/ipcc4/?thredds

THREDDS catalog
OpenDAP service points
Basic Authentication

Cloud-accessible with basic authentication
pass-through

i.e. llnl controlled user/password access to
analysis done in the cloud with CMIP3 data

http://esgcet.llnl.gov/dap/ipcc4/?thredds�

Sample CMIP3 access

CMIP3 is cloud accessible

Example

Canadian PhD student used this IRI data library interface
to do EOF, correlation and other analysis on CMIP3
model runs as well as other climate data

Now leading Climate and Agriculture group in Pakistan

Accessiblity makes a difference!

Mashup Authentication

A simple data mashup: difference between two variables
from two different datasets

If both datasets are access-restricted under different
security realms (different userid/password), then the
difference cannot be authenticated (Basic/Digest
Authentication only has one set of authentication info)

OpenID

OpenID separates user identification from resource access
authorization, so a federation of servers can have users
with the same id, yet decide separately who gets access
to their resources.

It also means resource providers can get out of the user
authentication business.

This is half of the solution to the mashup problem.

Man-in-the-Middle

Modern authentication schemes (i.e. other than Basic)
defend against man-in-the-middle attacks, i.e. defend
against a third-party sitting in the middle of the browser
and the authenticating server conversation and relaying
requests while copying for nefarious reasons.

This also eliminates third-parties for good reasons. So we
need to separate the good third parties from the bad
ones.

More than likely, this means one must explicitly
authenticate third-parties (cloud applications) as well as
users.

OAuth

Mechanism to authenticate third-parties
Used by third-party apps to access Google and Facebook

data, for example
Not a perfect match to our problem: built for large data

provider, tiny app limit, i.e. most apps build for one data
source.

Currently missing the “refusal” part of the standard, but that
could be part of Oauth 2.0, at which point it becomes
“Token” Authorization (refusal does not distinguish
between 2nd and 3rd parties, only the process for getting
a token differs).

OAuth is token-based

Bearer Token – possession of token is sufficient for
access

MAC Token – has associated secret, i.e. token can be
used over an unsecure channel

OAuth 1.0 initial access

Data ServiceAuthorization
Service

App

Browser

OAuth 1.0 subsequent access

Data ServiceAuthorization
Service

App

Browser

OAuth App must

 OAuth Protocol
 Identify user
 Remember authorized tokens by (user,data server)
 Probably will have pre-registered with data source

authentication service

OAuth 2.0

Authorization protocol in parallel with Basic and Digest
Authentication, i.e. the Unauthorized response gives the
information needed to get authorization

Will probably be called “Token” or “Bearer” or “MAC” (i.e
kinds of tokens) in WWW-Authenticate which will provide
two endpoints for authorization

Authorization-uri: endpoint for user to identify with
token-uri: endpoint for app to identify with

OAuth 2.0
Web App Flow(*)

Data ServiceAuthorization
Service

App

Browser

http://tools.ietf.org/id/draft-hammer-oauth2-00.html�

Federated Security for Federated Data

Authentication Service split between user identifier and
data protector

Data Apps need to identify users and associated valid
tokens

Data Providers need to validate both users and data apps
Need to avoid breaking anonymous/cached access
Could create a bit of a mess – when are the results of a

data analysis finally released from the use-constraints of
the data that went into it?

	Using OpenID/OAuth to access �Federated Data Services
	CMIP3
	Sample CMIP3 access
	CMIP3 is cloud accessible
	Mashup Authentication
	OpenID
	Man-in-the-Middle
	OAuth
	OAuth is token-based
	OAuth 1.0 initial access
	OAuth 1.0 subsequent access
	OAuth App must
	OAuth 2.0
	OAuth 2.0�Web App Flow(*)
	Federated Security for Federated Data

